During this period, the moon reaches its last quarter phase on Friday February 2nd. At that time the moon will lie 90 degrees west of the sun and will rise near 02:00 local standard time (LST) on February 3rd. This weekend the waning gibbous moon will rise during the early evening hours and will obscure all but the brighter meteors the remainder of the night. This is a difficult time to view meteor activity with low rates and moonlight most of the night. The estimated total hourly rates for evening observers this weekend should be near 4 as seen from mid-northern latitudes (45N) and 3 as seen from tropical southern locations (25S) For morning observers, the estimated total hourly rates should be near 15 as seen from mid-northern latitudes (45N) and 11 as seen from tropical southern locations (25S). The actual rates seen will also depend on factors such as personal light and motion perception, local weather conditions, alertness, and experience in watching meteor activity. Rates are reduced due to moonlight. Note that the hourly rates listed below are estimates as viewed from dark sky sites away from urban light sources. Observers viewing from urban areas will see less activity as only the brighter meteors will be visible from such locations.
The radiant (the area of the sky where meteors appear to shoot from) positions and rates listed below are exact for Saturday night/Sunday morning January 27/28. These positions do not change greatly day to day so the listed coordinates may be used during this entire period. Most star atlases (available at science stores and planetariums) will provide maps with grid lines of the celestial coordinates so that you may find out exactly where these positions are located in the sky. I have also included charts of the sky that display the radiant positions for evening, midnight, and morning. The center of each chart is the sky directly overhead at the appropriate hour. These charts are oriented for facing south but can be used for any direction by rotating the charts to the desired direction. A planisphere or computer planetarium program is also useful in showing the sky at any time of night on any date of the year. Activity from each radiant is best seen when it is positioned highest in the sky, either due north or south along the meridian, depending on your latitude. Radiants that rise after midnight will not reach their highest point in the sky until daylight. For these radiants, it is best to view them during the last few hours before dawn. It must be remembered that meteor activity is rarely seen at its radiant position. Rather they shoot outwards from the radiant, so it is best to center your field of view so that the radiant lies toward the edge and not the center. Viewing there will allow you to easily trace the path of each meteor back to the radiant (if it is a shower member) or in another direction if it is sporadic. Meteor activity is not seen from radiants that are located far below the horizon. The positions below are listed in a west to east manner in order of right ascension (celestial longitude). The positions listed first are located further west therefore are accessible earlier in the night while those listed further down the list rise later in the night.
These sources of meteoric activity are expected to be active this week
Details on each source will continue next week when viewing conditions are more favorable.
Those interested in detecting meteors via radio waves may start noticing activity from the Capricornid/Sagittarids (DCS). These meteors can be detected from January 13 through February 4, with maximum activity occurring near February 1st. These meteors would be best detected during the morning hours of 8-10am, when the radiant lies approximately half-way up in the sky. It should be noted that meteors do not emit radio waves, but they act as mirrors and reflect radio waves from distant transmitters which aren’t heard otherwise. This is called forward scatter, opposed to backscatter where the transmitter and receiver are at the same place (radar). For practical reasons the frequency range 50 – 150 MHz (wavelength 6 m – 2 m) is used. This includes amongst others the FM band and TV transmitters which haven’t switched yet to digital. Most reflections are short (less than a second), but brighter meteors can cause reflections lasting minutes. The shortest radio reflections are caused by faint meteors, fainter than visual ones. Radio reflections can be observed regardless of daylight or clouds, allowing more complete views of streams. For those interested in meteor observing via radio waves we invite you to visit RMOB.
The list below offers the information in tabular form. Rates and positions are exact for Saturday night/Sunday morning.
SHOWER | DATE OF MAXIMUM ACTIVITY | CELESTIAL POSITION | ENTRY VELOCITY | CULMINATION | HOURLY RATE | CLASS |
RA (RA in Deg.) DEC | Km/Sec | Local Standard Time | North-South | |||
Anthelions (ANT) | – | 09:24 (141) +14 | 30 | 01:00 | 1 – <1 | II |
Comae Berenicids (020 COM) | Dec 16 | 13:04 (196) +13 | 64 | 05:00 | <1- <1 | II |
Class Explanation: A scale to group meteor showers by their intensity:
- Class I: the strongest annual showers with Zenith Hourly Rates normally ten or better.
- Class II: reliable minor showers with ZHR’s normally two to ten.
- Class III: showers that do not provide annual activity. These showers are rarely active yet have the potential to produce a major display on occasion.
- Class IV: weak minor showers with ZHR’s rarely exceeding two. The study of these showers is best left to experienced observers who use plotting and angular velocity estimates to determine shower association. These weak showers are also good targets for video and photographic work. Observers with less experience are urged to limit their shower associations to showers with a rating of I to III.
2 comments
On saturday i have seen a Green Fireball
Date.27.january. saturday
Time 17.32
Location
Klagenfurt. Austria
Annemarie, thanks for your report.
If you have not already, please report about the details here:
http://fireballs.imo.net/